1、定义
箱排序的变种。为了区别于上述的箱排序,姑且称它为桶排序(实际上箱排序和桶排序是同义词)。
2、基本思想
桶排序的思想是把[0,1)划分为n个大小相同的子区间,每一子区间是一个桶。然后将n个记录分配到各个桶中。因为关键字序列是均匀分布在[0,1)上的,所以一般不会有很多个记录落入同一个桶中。由于同一桶中的记录其关键字不尽相同,所以必须采用关键字比较的排序方法(通常用插入排序)对各个桶进行排序,然后依次将各非空桶中的记录连接(收集)起来即可。
注意:
这种排序思想基于以下假设:假设输入的n个关键字序列是随机分布在区间[0,1)之上。若关键字序列的取值范围不是该区间,只要其取值均非负,我们总能将所有关键字除以某一合适的数,将关键字映射到该区间上。但要保证映射后的关键字是均匀分布在[0,1)上的。
3、桶排序算法
伪代码算法为:
void BucketSon(R) { //对R[0..n-1]做桶排序,其中0≤R[i].key<1(0≤i
注意:
实现时需设置一个指针向量B[0..n-1]来表示n个桶。但因为任一记录R[i]的关键字满足:0≤R[i].key<1(0≤i≤n-1),所以必须将R[i].key映射到B的下标区间[0,n-1)上才能使R[i]装入某个桶中,这可通过└n*(R[i].key)┘来实现。
4、桶排序算法分析
桶排序的平均时间复杂度是线性的,即O(n)。但最坏情况仍有可能是O(n2)。
箱排序只适用于关键字取值范围较小的情况,否则所需箱子的数目m太多导致浪费存储空间和计算时间。
【例】n=10,被排序的记录关键字ki取值范围是0到99之间的整数(36,5,16,98,95,47, 32,36,48)时,要用100个箱子来做一趟箱排序。(即若m=n2时,箱排序的时间O(m+n)=O(n2))。